

Written by : Barak Weichselbaum, all rights reserved 2000-2009

Site: http://www.komodia.com/

Email : barak@komodia.com

KOMODIA’S REDIRECTOR DLL FRAMWORK

Programmer’s Manual

INTRODUCTION 3

OVERVIEW 3

PARENTAL CONTROL FUNCTIONS 3

DLL FUNCTIONS 4

PCINITIALIZE 4

PCUNINITIALIZE 4

DEALLOCATE 4

NEWCONNECTION 5

HANDLEPROXYHTTPCONNECT 8

DATABEFORESEND 8

DATABEFORERECEIVE 12

CONNECTIONCLOSED 13

THREADING MODEL 13

CHTTPHELPER 13

OVERVIEW 13

FILTERHTTPHEADER 14

CHANGEHTTPHEADER 14

INSERTSPECIALFIELD 14

GETFINALSTRUCT 14

PARENTAL CONTROL ADD-ON MODULE 15

INTEGRATION WITH EXISTING DLL FUNCTIONS 15

ARCHITECTURE 15

CHTTPHEADER 16

FEED / FORCEFEED 16

GETHEADERSTRING / GETHEADERSTRINGCASE 16

ISREQUEST 16

GETHOST 16

GETURL 17

GETFULLADDRESS 17

SETHEADER 17

DELETEHEADER 17

GETHEADERDATA 17

HTTPREQUESTBEFORESEND 18

HTTPREQUESTBEFORERECEIVE 20

Introduction
This manual covers the programming aspects of Komodia’s Redirector product when writing a

DLL to extend the Redirector’s functionality. Another option is to modify the source code

directly. More on this option in the PCProxy direct programming manual, at:

 http://www.komodia.com/KRDR_manual.pdf

Overview

You can download the DLL framework from: http://www.komodia.com/PCProxyDLL.zip

Inside there are two directories:

1. PCProxyDLL\ This directory contains an empty skeleton.

2. PCProxySample\ This directory contains a suggested DLL with code inside that can

perform filtering and data peeking.

The file to open in either directory is PCProxyDLL.dsw, which opens the project in VS.

Parental control functions

Komodia’s Redirector have an optional Parental control module which frees you from the need to

parse and decode HTTP requests and replies (chunked transfer encoding and Gzip encoding are

transparent to you), in case the product you have purchased/evaluating has the parental control

module the DLL will support two extra functions which are described later in this document.

DLL Functions

The DLL exposes seven functions for PCProxy to use. PCProxy performs a sanity check on the

DLL when loading it. If one of the functions is missing, PCProxy will not load the DLL.

PCInitialize

bool _stdcall PCInitialize();

This function is called after the DLL is loaded and passes the sanity check. All user-specific

initializations, such as creating threads and global variables, should be here.

If the return value is false, the DLL will be unloaded and PCProxy will not use it.

PCUninitialize

void _stdcall PCUninitialize();

This function is called before PCProxy unloads the DLL. It is not called if Initialize returned a

false value. All uninitializations should be performed here.

Deallocate

void _stdcall Deallocate(char* pData);

This function is called to deallocate data that the DLL has allocated. The reason for this function

is that different types of compilers and languages use different types of allocation and

deallocation commands. Thus, PCProxy will deallocate data allocated by the DLL using this

method.

In the sample we use a C++ array delete:

delete [] pData;

NewConnection

bool _stdcall NewConnection(DWORD& rContext,

 bool bFromEncryption,

 unsigned long usListeningPort,

 unsigned long& rIP,

 unsigned short& rPort,

 const ProcessInformation& pPInformation,

 bool& rEnableSSL,

 bool& rSSLSwitch,

 bool& bFreezeReceive,

 const char* pPeekData,

 unsigned long ulPeekDataSize,

 unsigned long& rWaitMoreData,

 ProxyInformation& rProxyInformation)

This function is called whenever a new connection was made to PCProxy.

The parameters are:

rContext – A DWORD to be used across all functions that are called for this connection. The best

practice is to allocate a struct with all necessary connection-specific information, and store its

address inside this variable.

bFromEncryption – In case the data was originally encrypted with SSL but decrypted with the

SSL decryptors, this flag will be true.

usListeningPort – The port of the socket that accepted the connection inside the Redirector

(currently it will be 12344 or 12346).

rIP – The destination IP that this session is trying to connect to. The programmer can change this

value and the session will connect to the new IP.

rPort – The destination port that this session is trying to connect to. The programmer can change

this value and the session will connect to the new port.

pPInformation – Contains information about the calling process, the structure definition is:

typedef struct _ProcessInformation

{

 unsigned long ulPID;

 const unsigned short* pProcessName;

 const unsigned short* pDomain;

 const unsigned short* pUsername;

} ProcessInformation;

The Process name, Username and Domain are stored in Unicode, the following code snipest

converts them to std::wstring:

std::wstring sUsername((wchar_t*) pPInformation.pUsername);

rEnableSSL – Outputs this stream as SSL data (the port will usually be changed to 443).

rSSLSwitch – Set to true to notify that you might change this connection to SSL at a later stage,

but not now. Useful for proxies.

bFreezeReceive – Set to true to tell the Redirector not to send you any client data for processing

until you are ready. Useful when negotiating with a 3
rd

 party proxy.

pPeekData – This buffer contains data “peeked” from the client, which means for example that in

a web request this can contain the actual request before making any connection, this is useful

when wanting to make connecting decisions based on the traffic type.

rWaitMoreData – This flag sets the timeout in milliseconds to wait before invoking this function

again, more information on this in a few paragraphs below.

rProxyInformation – Contains the proxy information, in case there’s a global proxy defined, the

structure will hold this data, it is also possible to modify the struct to disable the proxy, enable a

proxy, and of course set the proxy settings, this setting is per connection.

The structure definition:

typedef enum _DLLProxyType

{

 dptHTTP,

 dptHTTPConnect,

 dptHTTPConnectSSL,

 dptHTTPHybrid,

 dptHTTPHybridSSL,

 dptSocks4,

 dptSocks5

} DLLProxyType;

typedef struct _ProxyInformation

{

 bool bUsingProxy;

 DLLProxyType aProxyType;

 char* pUsername;

 char* pPassword;

 unsigned long ulIP;

 unsigned short usPort;

} ProxyInformation;

Return value:

True – Allow this session

False – Reject this session

Sample code:

//Allow only port 80

if (usPort!=80)

 return false;

else

 return true;

This code allows only port 80 sessions through. Keep in mind that it only blocks sessions that are

intercepted by the LSP according to the rules you set.

Sample code for redirecting all port 80 sessions to SSL:

//Is it HTTP port?

if (rPort==80)

{

 //Change port to HTTPS

 rPort=443;

 //Enable the SSL

 rEnableSSL=true;

}

Sample code for saving session specific information inside the context variable:

//Defined at global scope

typedef struct _DLLData

{

 DWORD dwIP;

 Unsigned short usPort;

} DLLData;

//This part goes into the function

DLLData* pDLLData=new DLLData;

pDLLData->dwIP=rIP;

pDLLData->usPort=rPort;

//Store the struct at context level

rContext=(DWORD)pDLLData;

//Some code

//Done

return true;

Inside the sample DLL (the one with the code), this function contains code that detects whether

the session is HTTP and if so, it waits until it has the complete session.

HandleProxyHTTPConnect

bool _stdcall HandleProxyHTTPConnect(const char* pConnectString,

 char** ppNewString,

 DWORD dwContext)

This function is called after the Redirector creates the HTTP Connect clause, it allows you to

modify the content of it, and usually it is done to add custom authentication parameters.

pConnectString – Original connection clause (null terminated)

ppNewString – If the string is changed, the new string (null terminated) will be allocated into this

variable (by you)

dwContext – The DLL-specific context that was created at the NewConnection function

Return value:

True – Clause was modified

False – Clause wasn’t modified

DataBeforeSend

bool _stdcall DataBeforeSend(const char* pData,

 DWORD dwDataSize,

 char** pNewBuffer,

 DWORD& rNewDataSize,

 bool& rTerminateSession,

 bool& rNewBufferToReceive,

 OutgoingDataManipulations& rManipulations

 DWORD dwContext);

This function is called before sending the data to the final destination. For example, HTTP

requests are seen at this stage, keep in mind that TCP is stream based which means that data

comes in chunks, therefore HTTP requests can be chunked across multiple calls, there are number

of ways to make sure you receive a complete web request:

1. Use the code inside NewConnection (under the DLL sample) which waits until it has the

complete web request, and then you will receive the complete request here.

2. Use parental control add-on module, which does this for you transparently, you, can see

how the parental control add-on module works later in this manual.

3. In case you want to do perform header manipulation such as removing/modifying/adding

fields, you don’t need the complete request, you can just use the built in filtering solution

that does that for you (sample code is inside the DLL sample)

The parameters are:

pData – The data to process.

dwDataSize – The size of data to process.

pNewBuffer – If the data is modified, this will hold the modified data. Must be allocated by the

programmer, since the proxy will delete it.

rNewDataSize – If the data is modified, this will hold the modified data size.

rTerminateSession – Set to true to terminate the session when this function exits.

rNewBufferToReceive – Takes the contents of the new data and sends it to the application that

initiated the session (used mostly for redirects).

rManipulations – This structure contains the manipulations you want to employ on a HTTP

header, of course this is optional. You don’t use this structure directly, instead you use a helper

class called CHTTPHelper which is described later in this document.

dwContext – The DLL-specific context that was created at the NewConnection function.

Return value:

True – Data was modified.

False – Data wasn’t modified.

The flag rTerminateSession is not affected by the return value. You can terminate the session

without changing the data that you received inside pData.

Sample code to redirect the web traffic into a different site:

//Check that we are port 80

 //Get socket data from the context

 DLLData* pDLLData=(DLLData*)dwContext;

 //Set terminate to false, just in case

 rTerminateSession=false;

 //Check we are port 80

 if (pDLLData->usPort==80 &&

 pDLLData->dwIP!=inet_addr("64.118.87.10")) //This is our web

site address

 {

 //Our quote

 std::string sQuote;

 sQuote='"';

 //Build a new string

 std::string sTmp;

 sTmp+="<html><head><META HTTP-

EQUIV="+sQuote+"Refresh"+sQuote+" CONTENT="+sQuote+"0;URL=";

 sTmp+="http://www.komodia.com";

 sTmp+=sQuote+"></head></html>";

 //Convert the size

 char aTmp[11];

 itoa(sTmp.size(),

 aTmp,

 10);

 //HTML header

 std::string sHeader;

 sHeader="HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n";

 sHeader+="Content-Encoding: text/html\r\n";

 sHeader+="Content-Length: ";

 sHeader+=aTmp;

 sHeader+="\r\n\r\n";

 sHeader+=sTmp;

 //Our size

 rNewDataSize=sHeader.size();

 //Allocate new buffer

 *pNewBuffer=new char[rNewDataSize];

 memcpy(*pNewBuffer,

 sHeader.c_str(),

 sHeader.size());

 //Send to client

 rNewBufferToReceive=true;

 //Terminate the session

 rTerminateSession=true;

 //Set to change

 return true;

 }

 else

 return false;

In this code we get the session information, and then redirect every session that will connect to

port 80 to Komodia’s website using HTML redirection. The code compares the destination IP of

the current session to the IP of Komodia’s website and if the addresses matches there will be no

redirection, this to avoid redirection loops.

Inside the sample DLL this functions contains code that modifies the header, in this case, it

modifies the user-agent field, adds a new fields called “X-Redirector” and deletes the field

“refer”:

//Do we have a context?

 ContextData* pContext;

 pContext=(ContextData*)dwContext;

 //This code adds HTTP manipulations

 //This code also make sure to set the filter once per request,

because a request can come in many times

 //Because it is fragmented

 //Is this HTTP?

 if (pContext &&

 pContext->bNewRequest && //This checks that we are inside a

new request, and not inside an existing request

 IsHTTP(pData,

 dwDataSize))

 {

 //The request can fragment and we don't want to be here per

fragment, but per request

 pContext->bNewRequest=false;

 //Here we build the filter

 //These fileds are just for the sake for demonstration

 //Please change them to reflect your own fields

 CHTTPHelper aHelper;

 //Each method can be called multiple times

 //Fields to change

 //Uncomment the next code, keep in mind that it may cause

problems with

 //Sites that are based on your browser

 aHelper.ChangeHTTPHeader("user-agent","Blank agent");

 //Fields to add

 aHelper.InsertSpecialField("X-Redirector","Just a value");

 //Fields to remove

 aHelper.FilterHTTPHeader("Refer");

 //Build the struct

 //Don't call this function unless you want to have a filter

 //Or have a filter override

 rManipulations=aHelper.GetFinalStruct();

 //Done

 return false;

 }

 //Done

 return false;

This is the sample code taken from the DLL, the class used here CHTTPHelper is documented

later in this chapter.

DataBeforeReceive

bool _stdcall DataBeforeReceive(const char* pData,

 DWORD dwDataSize,

 char** pNewBuffer,

 DWORD& rNewDataSize,

 bool& rTerminateSession,

 bool& rThawReceiveFreeze,

 bool& rEnableSSL,

 bool bServerClosed,

 DWORD dwContext);

This function is called before sending the data back to the application that initiated the session.

Any answer from a web server will be caught by this function, keep in mind that answers comes

in fragmented, if you need HTTP answers to come in complete and/or decoded you might

consider using the parental control add-on that is documented later in this chapter.

The parameters are:

pData – The data to process.

dwDataSize – Size of data to process.

pNewBuffer – If the data is modified, this will hold the modified data. It must be allocated by the

programmer, since the proxy will delete it.

rNewDataSize – If the data is modified, this will hold the modified data size.

rTerminateSession – Set to true to terminate the session when this function exits.

rThawReceiveFreeze – Set to true to allow Redirector to process data from the client that was

held due to the bFreezeReceive flag in the function NewConnection.

rEnableSSL – Set to true to switch to SSL session. This can be set only if the flag rSSLSwitch

was set during the NewConnection method call.

bServerClosed – When this flag is set, it means that the remote server closed the connection and

at this stage you have last chance to send data to the client side before the Redirector closes the

connection.

dwContext – DLL-specific context that was created at the NewConnection function.

Return value:

True – Data was modified.

False – Data was not modified.

The flag rTerminateSession is not affected by the return value. You can terminate the session

without changing the data that you received inside pData.

ConnectionClosed

void _stdcall ConnectionClosed(bool bError,

 DWORD dwContext);

This function is called when the session has ended.

bError – Indicates whether the session ended because of an error (failed connection attempt), or

because the remote side ended the connection.

This is the place to release the dwContext if it was allocated. Sample code:

delete (DLLData*)dwContext;

Threading model

Calls to NewConnection come from different threads.

Calls to DataBeforeReceive for a specific connection are always from the same thread.

Calls to DataBeforeSend for a specific connection are always from the same thread, but not the

same thread as that of DataBeforeReceive.

CHTTPHelper

This class is used to create HTTP filtering, e.g. Adding, modifying and removing HTTP header

fields.

Inside the PCProxySample DLL sample there’s a usage of this class in the correct context. This

section will go over the four main functions of the class.

Overview

When adding parameters to the functions don’t add the ‘:’:

Correct: “Connection”

Incorrect: “Connection:”

And never terminate the strings with \r\n

Correct: “Some data”

Incorrect: “Some data\r\n”

Headers are case insensitive, data is case sensitive.

FilterHTTPHeader

void FilterHTTPHeader(const std::string& rHeader);

Use this function to add name of headers to remove from the request, a sample header would be

“If-Modified-Since” removing this field will not allow server to give you cached result.

ChangeHTTPHeader

void ChangeHTTPHeader(const std::string& rHeader,

 const std::string& rNew);

Use this function to change data of a specific header, for example:

ChangeHTTPHeader(“user-agent”,

 “Some agent”);

The filter will only modify existing headers, if the header isn’t in the request it will not be added.

InsertSpecialField

void InsertSpecialField(const std::string& rField,

 const std::string& rData);

Use this function to add a field to the request, the field will be added only if it doesn’t exist in the

original request:

InsertSpecialField(“X-Redirector”,

 “Some data”);

If you want to make sure a field always exists with a value you want but you’re no sure whether

this field always appear, you can set the filter to delete the header field and then insert your field.

GetFinalStruct

OutgoingDataManipulations GetFinalStruct(bool bOverideProxy=false,

 bool bOveridGlobal=false)const;

This is the function that converts all the data you entered into a struct the Redirector can use.

Parameters:

bOverideProxy - Set to true to disable HTTP proxy and HTTP hybrid proxy filtering (which

adjusts the request from normal request to a proxy request)

bOveridGlobal – Set to true to disable global HTTP filtering (which you set via the console)

Parental control add-on module

Integration with existing DLL functions

When working with parental controls, you may still want to handle non HTTP data therefore all

functions that part of the regular DLL extension are still active when using parental control, you

may choose to use them or not, it’s up to you.

Architecture

After a connection is being made (after NewConnection was called) the Redirector assembles the

outgoing request (e.g. GET / HTTP/1.1) and when it’s complete (incase of a POST request, when

it contains all the POST data) the Redirector calls the function HTTPRequestBeforeSend so it can

perform analysis on the outgoing request, keep in mind that during the assembly of the request

the method DataBeforeSend is called per chunk, but if you choose to work with the parental

control feature you can just ignore it (ignoring=not performing any operation at that level)

At this stage you have number of options available to you:

• Do nothing (dhrNothing) – Request will be sent normally.

• Don’t perform parental on this request (dhrDontDoParental) – Incase you know that you

have no need to further parse this specific request, the answer received will not be parsed

with the parental control add-on, if there will be a request made after this one in the same

socket connection, the process will start again (the don’t perform parental control is good

for one request only)

• Block the connection (dhrBlock) – The request is not sent and the connection is closed.

• Redirect the connection to a different URL (dhrRedirect) – You specify a URL you want

the browser to be redirected to, e.g. if you specify http://www.komodia.com the session

will be redirected to Komodia’s web site.

• Modify (dhrModify) – You modify the header to contain custom data.

• Return HTML (dhrReturnHTML) – The Redirector will take your HTML, wrap it with

HTTP header and will send it back to the browser, while discarding the original request,

this is good for custom block pages.

• Return HTML and header (dhrReturnHTMLAndHeader) – You specify the HTML and

HTML header to return back to the browser, while discarding the original request, this is

good for block pages.

Parsing of the header is done via a helper class called CHTTPHeader.

CHTTPHeader

This class is used to help you work with HTTP headers, although the Redirector gives you

complete requests/replies, you still want to do some inspection on them, this class helps you by

parsing the requests/replies and give you methods to easily get and modify the data you want.

Feed / ForceFeed

This two functions are used to give the class the raw data, the difference between Feed and

ForceFeed is that Feed is sequential, which means that you can give it sequential fragmented

chunks of the header, unlike ForceFeed that clears previous content and start from the beginning,

our case we can use either methods, return value is true for indication we have a complete header

and false for not having a complete header, usage example:

CHTTPHeader aHeader;

if (aHeader.Feed(pHeader,

 dwHeaderSize))

{

 //Do something

}

GetHeaderString / GetHeaderStringCase

After we got a parsed header we want to start inspecting the contents, this two functions get the

data of the specific HTTP headers (the only difference is that GetHeaderStringCase preserves the

case of the data), for example, lets look at this simple HTTP request:

GET /index.php HTTP/1.1

User-agent: Mozilla Firefox

Connection: Keep-alive

Host: www.google.com

Now lets get the value of connection (without preserving case), keep in mind that all requests are

made in lower case (we are assuming we continue from the last example)

std::string sConnection(aHeader.GetHeaderString(“connection”));

IsRequest

bool IsRequest()const;

This function will return true if the parsed header was a HTTP request and false if it was a HTTP

reply.

GetHost

std::string GetHost()const;

This function will give us the host of the request (relevant to requests only)

GetResponseCode

unsigned short GetResponseCode()const;

This function returns the HTTP response code (relevant to replies only)

GetURL

const std::string& GetURL()const;

This function returns the URL of the request, in our example it would be /index.php

GetFullAddress

const std::string& GetFullAddress()const;

This function returns the full address of the request, in our example it would be:

http://www.google.com/index.php

SetHeader

void SetHeader(const std::string& rHeader,

 const std::string& rData);

This function is used to modify the header, in case the header given exists it will be changed, if

the header do not exist, it will be added with the specified value, for example changing our

header connection type (rHeader is case insensitive):

AHeader.SetHeader(“connection”,”close”);

DeleteHeader

void DeleteHeader(const std::string& rHeader);

This function will delete a header from the request/reply (if it exists, rHeader is case insensitive)

GetHeaderData

DataVector GetHeaderData(DWORD dwStart=0)const;

Get the data of the header as a vector of chars, this data will include all the changes we have

performed on the header.

HTTPRequestBeforeSend

DLLHTTPResult _stdcall HTTPRequestBeforeSend(const char* pHeader,

 DWORD dwHeaderSize,

 char** ppNewHeader,

 DWORD& rNewHeaderSize,

 DWORD dwContext);

The returned enum definition:

typedef enum _DLLHTTPResult

{

 dhrNothing=0,

 dhrBlock,

 dhrRedirect,

 dhrModify,

 dhrReturnHTML,

 dhrReturnHTMLAndHeader,

 dhrDontDoParental

} DLLHTTPResult;

This function is called when an outgoing request is ready to be inspected.

The parameters are:

pHeader – The pointer containing the header data

dwHeaderSize – Size of the header in bytes.

ppNewHeader – If you need to return data to the Redirector, in case of modify or redirect, you

need to allocate the data and give it to this pointer.

rNewHeaderSize – Size of the new data or redirect address.

dwContext – DLL-specific context that was created at the NewConnection function.

Return value:

Action to take with this request, you can look what each value means under the Architecture

section.

Sample code taken from the DLL (you can download the DLL sample from:

http://www.komodia.com/PCProxyDLL.zip)

//Take the context

ContextData* pData;

pData=(ContextData*)dwContext;

//At this stage we have a complete header

//It's easiest to work with the supplied class

//For header parsing

//Give it to the header

CHTTPHeader aHeader;

if (aHeader.Feed(pHeader,

 dwHeaderSize))

{

 //We can get some usefull information at this stage

 //Host

 std::string sHost(aHeader.GetHost());

 //URI

 std::string sURI(aHeader.GetURL());

 //The full address

 std::string sFullAddress(aHeader.GetFullAddress());

//Save the host in the session data

 if (pData &&

 pData->sHost.empty())

pData->sHost=sHost;

This code snipest parses the header and extracts basic data we can use, now lets perform a

redirect:

//Lets say we want to build a redirect based on the request

//We need to make sure that we are not redirecting over and over

//The site we are redirecting to

//This code performs it

if (!strstr(sHost.c_str(),

 "komodia.com") &&

 !strstr(sHost.c_str(),

 "google"))

{

//Redirect to address, always in the form of http://website

 std::string sRedirectTo;

 sRedirectTo="http://www.komodia.com";

 //Save the data

 *ppNewHeader=new char[sRedirectTo.size()+1];

 memcpy(*ppNewHeader,

 sRedirectTo.c_str(),

 sRedirectTo.size()+1);

 //Set size

 rNewHeaderSize=sRedirectTo.size()+1;

 //Let Redirector know that this is a redirect

 return dhrRedirect;

}

HTTPRequestBeforeReceive

DLLHTTPResult _stdcall HTTPRequestBeforeReceive(const char* pHeader,

 DWORD dwHeaderSize,

 char** ppNewHeader,

 DWORD& rNewHeaderSize,

 const char* pData,

 DWORD dwDataSize,

 char** ppNewData,

 DWORD& rNewDataSize,

 bool bHeaderCheck,

 DWORD dwContext);

This function is called when an incoming request is ready to be inspected so you can decide if

you want to do something with it right now (instead of waiting for the download to complete), it

is then called again when it contain the full HTTP data (data is in the buffers, the browser didn’t

receive it yet), the data is parsed, even if the original was Gzip encoding of chunked transfer

encoding, you still receive plain text and the returned headers are modified automatically to

accommodate for this change.

The parameters are:

pHeader – The pointer containing the header data

dwHeaderSize – Size of the header in bytes.

ppNewHeader – If you need to return data to the Redirector, in case of modify or redirect, you

need to allocate the data and give it to this pointer.

rNewHeaderSize – Size of the new data or redirect address.

pData – The pointer containing the actual data (HTML usually)

dwDataSize – Size of the data in bytes.

ppNewData – If you need to return new data to the Redirector, in case of modify or redirect, you

need to allocate the data and give it to this pointer.

rNewDataSize - Size of the new data.

bHeaderCheck – This flag is true when this call is with header only and data is still downloading,

keep in mind that if the Redirector managed to get the complete reply (header+data) in one call,

this method will be called only once (with this flag false). When the flag is false it means that this

is the complete reply.

dwContext – DLL-specific context that was created at the NewConnection function.

Return value:

Action to take with this reply, you can look what each value means under the Architecture

section.

Sample code taken from the DLL:

//Is this a header check (gives us change to determine what we are

receiving, in case it's a big file

//we might not want to process it

//Header check means that we have a complete header, but not all the

data

if (bHeaderCheck)

{

 //Try to parse the header

 CHTTPHeader aHeader;

 if (aHeader.Feed(pHeader,

 dwHeaderSize))

 {

 //We can get some usefull information at this stage

 //Response code

 DWORD dwResponseCode(aHeader.GetResponseCode());

 //Try to get the content type

 std::string sContentType(aHeader.GetHeaderString("content-

type"));

 //Now there are some content we don't want to perform

parental control on

 //Of course you can change these settings

 //These settings are just for sample sake

 //For these kind of files (.swf, .zip, .exe) filtering

should be performed at the level of HTTPRequestBeforeSend

 if (strstr(sContentType.c_str(),

 "image/") ||

 strstr(sContentType.c_str(),

 "video/") ||

 strstr(sContentType.c_str(),

 "audio/") ||

 strstr(sContentType.c_str(),

 "application/"))

 //Don't do parental

 return dhrDontDoParental;

 }

 }

This code snipest checks the reply while we still haven’t got the data, and checks the content-

type, if it’s media files usually we don’t need to hold them in buffer (because they are large files

mostly) and in case of parental control if they should be rejected it should be done at the stage of

HTTPRequestBeforeSend.

Now lets perform a redirect in this stage (after we got all the data):

else

{

//Take the host from the session data

 std::string sHost;

 //Do we have session data?

 if (pContextData)

 sHost=pContextData->sHost;

 //Uncomment the next command to disable the redirect sample

 //return dhrNothing;

 //At this stage we have a full request, for those we didn't

disable

 //Lets say we want to perform a filtering here

 //We need to make sure that we are not redirecting over and over

 //The site we are redirecting to

 //This code performs it

 if (!strstr(sHost.c_str(),

 "komodia.com") &&

 !strstr(sHost.c_str(),

 "google"))

 {

 //Redirect to address, always in the form of

http://website

 std::string sRedirectTo;

 sRedirectTo="http://www.komodia.com";

 //Save the data

 *ppNewHeader=new char[sRedirectTo.size()+1];

 memcpy(*ppNewHeader,

 sRedirectTo.c_str(),

 sRedirectTo.size()+1);

 //Set size

 rNewHeaderSize=sRedirectTo.size()+1;

 //Let Redirector know that this is a redirect

 return dhrRedirect;

 }

}

